Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Oral Pathol Med ; 52(10): 988-995, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37712132

RESUMEN

BACKGROUND: Odontogenic tumors (OT) are composed of heterogeneous lesions, which can be benign or malignant, with different behavior and histology. Within this classification, ameloblastoma and ameloblastic carcinoma (AC) represent a diagnostic challenge in daily histopathological practice due to their similar characteristics and the limitations that incisional biopsies represent. From these premises, we wanted to test the usefulness of models based on artificial intelligence (AI) in the field of oral and maxillofacial pathology for differential diagnosis. The main advantages of integrating Machine Learning (ML) with microscopic and radiographic imaging is the ability to significantly reduce intra-and inter observer variability and improve diagnostic objectivity and reproducibility. METHODS: Thirty Digitized slides were collected from different diagnostic centers of oral pathology in Brazil. After performing manual annotation in the region of interest, the images were segmented and fragmented into small patches. In the supervised learning methodology for image classification, three models (ResNet50, DenseNet, and VGG16) were focus of investigation to provide the probability of an image being classified as class0 (i.e., ameloblastoma) or class1 (i.e., Ameloblastic carcinoma). RESULTS: The training and validation metrics did not show convergence, characterizing overfitting. However, the test results were satisfactory, with an average for ResNet50 of 0.75, 0.71, 0.84, 0.65, and 0.77 for accuracy, precision, sensitivity, specificity, and F1-score, respectively. CONCLUSIONS: The models demonstrated a strong potential of learning, but lack of generalization ability. The models learn fast, reaching a training accuracy of 98%. The evaluation process showed instability in validation; however, acceptable performance in the testing process, which may be due to the small data set. This first investigation opens an opportunity for expanding collaboration to incorporate more complementary data; as well as, developing and evaluating new alternative models.


Asunto(s)
Ameloblastoma , Carcinoma , Aprendizaje Profundo , Tumores Odontogénicos , Humanos , Ameloblastoma/diagnóstico por imagen , Ameloblastoma/patología , Inteligencia Artificial , Reproducibilidad de los Resultados , Tumores Odontogénicos/diagnóstico por imagen , Tumores Odontogénicos/patología
2.
J Oral Pathol Med ; 52(10): 980-987, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37712321

RESUMEN

BACKGROUND: Dysplasia grading systems for oral epithelial dysplasia are a source of disagreement among pathologists. Therefore, machine learning approaches are being developed to mitigate this issue. METHODS: This cross-sectional study included a cohort of 82 patients with oral potentially malignant disorders and correspondent 98 hematoxylin and eosin-stained whole slide images with biopsied-proven dysplasia. All whole-slide images were manually annotated based on the binary system for oral epithelial dysplasia. The annotated regions of interest were segmented and fragmented into small patches and non-randomly sampled into training/validation and test subsets. The training/validation data were color augmented, resulting in a total of 81,786 patches for training. The held-out independent test set enrolled a total of 4,486 patches. Seven state-of-the-art convolutional neural networks were trained, validated, and tested with the same dataset. RESULTS: The models presented a high learning rate, yet very low generalization potential. At the model development, VGG16 performed the best, but with massive overfitting. In the test set, VGG16 presented the best accuracy, sensitivity, specificity, and area under the curve (62%, 62%, 66%, and 65%, respectively), associated with the higher loss among all Convolutional Neural Networks (CNNs) tested. EfficientB0 has comparable metrics and the lowest loss among all convolutional neural networks, being a great candidate for further studies. CONCLUSION: The models were not able to generalize enough to be applied in real-life datasets due to an overlapping of features between the two classes (i.e., high risk and low risk of malignization).


Asunto(s)
Aprendizaje Profundo , Humanos , Estudios Transversales , Redes Neurales de la Computación , Aprendizaje Automático , Biopsia
3.
Oral Oncol ; 140: 106386, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023561

RESUMEN

INTRODUCTION: The aim of the present systematic review (SR) is to summarize Machine Learning (ML) models currently used to predict head and neck cancer (HNC) treatment-related toxicities, and to understand the impact of image biomarkers (IBMs) in prediction models (PMs). The present SR was conducted following the guidelines of the PRISMA 2022 and registered in PROSPERO database (CRD42020219304). METHODS: The acronym PICOS was used to develop the focused review question (Can PMs accurately predict HNC treatment toxicities?) and the eligibility criteria. The inclusion criteria enrolled Prediction Model Studies (PMSs) with patient cohorts that were treated for HNC and developed toxicities. Electronic database search encompassed PubMed, EMBASE, Scopus, Cochrane Library, Web of Science, LILACS, and Gray Literature (Google Scholar and ProQuest). Risk of Bias (RoB) was assessed through PROBAST and the results were synthesized based on the data format (with and without IBMs) to allow comparison. RESULTS: A total of 28 studies and 4,713 patients were included. Xerostomia was the most frequently investigated toxicity (17; 60.71 %). Sixteen (57.14 %) studies reported using radiomics features in combination with clinical or dosimetrics/dosiomics for modelling. High RoB was identified in 23 studies. Meta-analysis (MA) showed an area under the receiver operating characteristics curve (AUROC) of 0.82 for models with IBMs and 0.81 for models without IBMs (p value < 0.001), demonstrating no difference among IBM- and non-IBM-based models. DISCUSSION: The development of a PM based on sample-specific features represents patient selection bias and may affect a model's performance. Heterogeneity of the studies as well as non-standardized metrics prevent proper comparison of studies, and the absence of an independent/external test does not allow the evaluation of the model's generalization ability. CONCLUSION: IBM-featured PMs are not superior to PMs based on non-IBM predictors. The evidence was appraised as of low certainty.


Asunto(s)
Neoplasias de Cabeza y Cuello , Xerostomía , Humanos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Biomarcadores , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...